
International Journal of Engineering, Science and Mathematics
Vol7. Issue 3, Month 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

131 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

A BRIEF SURVEY OF CREATING SEMANTIC WEB CONTENT WITH PROTÉGÉ

M. El Asikri 

S. Krit 

H.Chaib 

 Abstract

 An ontology development tool is often the first thing that

people get to see when they venture into the Semantic Web
field. Ontology editors and visualization tools therefore carry a
special responsibility for the success of the Semantic Web
community. At the same time, the user communities around
such tools serve as melting pots which can be exploited to
collect feedback on the overall design of the language and
associated systems.

Protégé is one of the most used development platforms for
ontology-based systems. This paper report on the experiences
of using Protégé with OWL. The intention of the Protégé and
specially Protégé Plugin is to make Semantic Web technology
available to a broad group of developers and users, and to
promote best practices and design patterns. In this document
we walk through a selection of these issues and suggest
directions for future work and standardization efforts.

Keywords:

Semantic Web;
Ontology;
Protégé;
OWL;

Copyright © 2018 International Journals of Multidisciplinary
Research Academy. All rights reserved.

Author correspondence:

Mohamed El Asikri ,
Department Mathematics, Informatics and Management,
Laboratory of Engineering Sciences and Energy.
Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University
Agadir BP/638 Morocco

1. Introduction

 Ontology is a conceptualization of a domain into machine readable format [1]. Ontologies

are becoming increasingly popular modelling schemas for knowledge management services

and applications. Focus on developing tools to graphically visualise ontologies is rising to aid

their assessment and analysis. Graph visualisation helps to browse and comprehend the

structure of ontologies. Protégé [2] is one of the most widely used ontology development

tools that were developed at Stanford University. Protégé provides an intuitive editor for

ontologies and has extensions for ontology visualization, project management, software

http://www.ijesm.co.in/
http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

132 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

engineering and other modelling tasks. An ontology, according to the definition in [3] is a

formal explicit description of a domain, consisting of classes, which are the concepts found

in the domain. Classes are organized in a specialization/generalization hierarchy through is-a

(or inheritance) links, where each class is allowed to have zero, one or multiple parent

classes. Each class has properties (or slots) describing various features of the modelled class.

Slots are typed, and allowed types are either simple types (strings, numbers, booleans or

enumerations) or instances of other classes (references); restriction on the value ranges of

slots (e.g. integers from 1 to 10) may also be defined. Finally, instantiation may be applied

to classes to produce items corresponding to individual objects in the domain of discourse

(instances). Each instance has a concrete value for each property of the class it belongs to.

Classes, together with instances are said to constitute the knowledge base. From the

definition above, it is evident that the task of visualizing the full set of ontology features is

not an easy one. The properties of ontology are summarized as follows:

 Hierarchy. A type of organization that, like a tree, branches into more specific units, each of which is

“owned” by the higher-level unit immediately above.

 Properties representation. More than a hierarchy, as it concepts are described by using restrictions on

properties.

 Level of detail. Possibility to choose till which level an ontology to be provided.

 History. The concepts that were chosen in the previous steps.

 Filtering. Ontologies could contain hundreds of properties. The user can be interested in only the

subset of the ontology, based on the central concept and the properties of the user’s choice.

 Multiple geometrical views. The representation of the graph in different geometrical models to

better understand the structure of ontology.

 Zoom semantic/geometric. To see more or less details during ontology exploration. With the

geometric zoom the visualized object is scaled when the user zooms in/out. The semantic zoom

provides the possibility to see more/less details of the object by zooming in/out.

This paper introduces Protégé for creating OWL ontologies and gives a brief overview of the OWL

ontology language. With the focus on building an OWL ontology and using a Description Logic

Reasoner to check the consistency of the ontology and automatically compute the ontology class

hierarchy and describes some plugin of Protégé which aren’t directly used in the main paper.

2. Method for building ontology and OWL language

2.1 Building ontology process

 We will presents, in direct chronological order, the most well known approaches for building
ontologies [4] from scratch, as well as reusing ontologies that are stored in ontology libraries. First the
main set of criteria used to compare different approaches of this type is presented. Then, a brief
description of each approach is provided, presenting who has elaborated it and the proposed steps and
activities, there is no one correct methodology for developing ontologies. Developing ontology is usually
an iterative process. We can start with a rough first pass at the ontology and then revise and refine the
evolving ontology. Ontology is a model of a real domain in the world and the concepts in the ontology
must reflect this reality. After defining an initial version of the ontology, we can evaluate and debug it
by using it in applications or problem-solving methods or by discussing it with experts in the field. As a
result, we will almost certainly need to revise the initial ontology.

 This process of iterative design will likely continue through the entire lifecycle of the ontology.
Developing an Ontology may include:

1. Selection of Domain and Scope
2. Consider Reuse
3. Find out Important Terms

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

133 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

4. Defining Classes and Class Hierarchy
5. Defining Properties of Classes and Constraints
6. Create Instances of classe

2.2 OWL Ontologies :

 Ontologies are used to capture knowledge about some domain of interest. An ontology describes the
concepts in the domain and also the relationships that hold between those concepts. Different ontology
languages provide different facilities. The most recent development in standard ontology languages is
OWL from the World Wide Web Consortium (W3C).

OWL makes it possible to describe concepts but it also provides new facilities. It has a richer set of
operators - e.g. intersection, union and negation. It is based on a different logical model which makes it
possible for concepts to be defined as well as described. Complex concepts can therefore be built up in
definitions out of simpler concepts. Furthermore, the logical model allows the use of a reasoner which
can check whether or not all of the statements and definitions in the ontology are mutually consistent
and can also recognise which concepts fit under which definitions. The reasoner can therefore help to
maintain the hierarchy correctly. This is particularly useful when dealing with cases where classes can
have more than one parent.

An OWL ontology consists of Individuals, Properties, and Classes, which roughly correspond to Protégé
frames Instances, Slots and Classes.

2.3 OWL Language:

The Semantic Web is a vision for the future of the Web in which information is given explicit meaning,
making it easier for machines to automatically process and integrate information available on the Web.
The Semantic Web will build on XML's ability to define customized tagging schemes and RDF's flexible
approach to representing data. The first level above RDF required for the Semantic Web is an ontology
language what can formally describe the meaning of terminology used in Web documents. If machines
are expected to perform useful reasoning tasks on these documents, the language must go beyond the
basic semantics of RDF Schema. The OWL Use Cases and Requirements Document provides more
details on ontologies, motivates the need for a Web Ontology Language in terms of six use cases, and
formulates design goals, requirements and objectives for OWL.

OWL has been designed to meet this need for a Web Ontology Language. OWL is part of the growing
stack of W3C recommendations related to the Semantic Web:

• XML provides a surface syntax for structured documents, but imposes no semantic

constraints on the meaning of these documents.

• XML Schema is a language for restricting the structure of XML documents and also

extends XML with datatypes.

• RDF is a datamodel for objects ("resources") and relations between them, provides a

simple semantics for this datamodel, and these datamodels can be represented in an

XML syntax.

• RDF Schema is a vocabulary for describing properties and classes of RDF resources,

with a semantics for generalization-hierarchies of such properties and classes.

• OWL adds more vocabulary for describing properties and classes: among others,

relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality,

richer typing of properties, characteristics of properties (e.g. symmetry), and

enumerated classes.

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

134 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

• OWL provides three increasingly expressive sublanguages designed for use by specific

communities of implementers and users :

• OWL Lite supports those users primarily needing a classification hierarchy and simple

constraints. For example, while it supports cardinality constraints, it only permits

cardinality values of 0 or 1. It should be simpler to provide tool support for OWL Lite

than its more expressive relatives, and OWL Lite provides a quick migration path for

thesauri and other taxonomies. Owl Lite also has a lower formal complexity than OWL

DL, see the section on OWL Lite in the OWL Reference for further details.

OWL DL supports those users who want the maximum expressiveness while retaining computational
completeness (all conclusions are guaranteed to be computable) and decidability (all computations will
finish in finite time). OWL DL includes all OWL language constructs, but they can be used only under
certain restrictions (for example, while a class may be a subclass of many classes, a class cannot be an
instance of another class). OWL DL is so named due to its correspondence with description logics, a field
of research that has studied the logics that form the formal foundation of OWL.

OWL Full is meant for users who want maximum expressiveness and the syntactic freedom of RDF with
no computational guarantees. For example, in OWL Full a class can be treated simultaneously as a
collection of individuals and as an individual in its own right. OWL Full allows an ontology to augment
the meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that any reasoning software will
be able to support complete reasoning for every feature of OWL Full.

Owl example:

<owl:Class

rdf:about="http://www.semanticweb.org/med/ontologies/2017/11/Animauxplantes.owl#PlanteS

avoureuse">

 <rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/med/ontologies/2017/11/Animauxplantes.owl#Plant

e"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty

rdf:resource="http://www.semanticweb.org/med/ontologies/2017/11/Animauxplantes.owl#mangepar"/>

 <owl:someValuesFrom

rdf:resource="http://www.semanticweb.org/med/ontologies/2017/11/Animauxplantes.owl#Carnivore"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty

rdf:resource="http://www.semanticweb.org/med/ontologies/2017/11/Animauxplantes.owl#mangepar"/>

 <owl:someValuesFrom

rdf:resource="http://www.semanticweb.org/med/ontologies/2017/11/Animauxplantes.owl#Herbivore"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

3 protégé

Protégé [5] is a very popular knowledge-modelling tool developed at Stanford University. Ontologies
and knowledge-bases can be edited interactively within Protégé and accessed with a graphical user
interface and Java API figure 1. Protégé can be extended with pluggable components to add new
functionalities and services.
There exists an increasing number of plugins offering a variety of additional features, such as extra
ontology management tools, multimedia support, querying and reasoning engines, problem solving

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

135 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

methods, etc. Protégé implements a rich set of knowledge-modelling structures and actions that
support the creation, visualization, and manipulation of ontologies in various representation formats.
Protégé gives support for building the ontologies that are frame-based, in accordance with the Open
Knowledge Base Connectivity protocol (OKBC). The extended version of frame based system was
introduced in 2003 to support OWL with an advantage of semantic web version. There are various
forms such as RDF(s), OWL and XML Schema in which protégé ontology can be exported.

The OWL Plugin is a complex protégé extension that can be used to edit OWL files and databases.
The OWL Plugin includes a collection of custom-tailored tabs and widgets
for OWL, and provides access to OWL-related services such as classification, consistency
checking, and ontology testing.

Figure 1 : Protégé interface

3.1 OWL Plugin Metamodel

The OWL Plugin extends the Protégé model and its API with classes to represent the OWL specification. The
OWL Plugin supports RDF(S), OWL Lite, OWL DL (except for anonymous global class axioms, which need to
be given a name by the user) and significant parts of OWL Full (including metaclasses). In order to better
understand this extension mechanism, we need to look at the differences between the Protégé
metamodel and OWL. OWL is an extension of RDF(S) [7].

Figure 2 OWL plugins architecture

RDF has a very simple triple-based model that is often too verbose to be edited directly in a tool.
Fortunately, RDF Schema extends RDF with metamodel classes and properties which can be mapped into

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

136 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

the Protégé metamodel. As a result, the extensions that OWL adds to RDF(S) can be reflected by extensions
of the Protégé metamodel.
Although this extension has been successfully implemented for the OWL Plugin, not all aspects of
the metamodels could be mapped trivially. It was straight-forward to represent those aspects of
OWL that just extend the Protege metamodel. For example, in order to represent disjoint class
relationships, it was sufficient to add a new property :OWL-DISJOINT-CLASSES to Proteg
owl:Class metaclass. It was also relatively easy to represent OWL’s complex class constructors
that can build class descriptions out of logical statements. For example, OWL classes can be
defined as the complement of other classes, using the owl:complementOf constructor. In the
OWL Plugin, complements are represented by instances of a metaclass :OWL-COMPLEMENT-
CLASS that inherits from other Protege system classes, the other types of OWL class constructors
such as restrictions and enumerated classes, and the various kinds of properties are mapped into
similar metaclasses. Other aspects of OWL required some work to maintain a maximum of
backward compatibility with traditional Protege applications. There is a semantic difference
between Protege and OWL if multiple restrictions are defined at the same time. In particular,
Protégé properties with multiple classes as their range can take as values instances of all classes
(union semantics), whereas OWL properties with multiple classes in their range can only take
values that are instances of all classes at the same time (intersection semantics). In order to solve
this mismatch, the OWL Plugin uses an internal owl:unionOf class if the user has defined more
than one range class. The same applies to a property’s domain. Another difference is that OWL
does not have the notion of facets, which in Protege are used to store property restrictions at a
class. While a maximum cardinality restriction at a class in Protege is represented by a single
quadruple (class, property, facet, value), the same is stored as an anonymous superclass in OWL.
OWL even supports attaching annotation property values to such anonymous classes, and
therefore it would be insufficient to map OWL restrictions into facets only.

3.2 Ontology maintenance and evolution :

 Ontology design is a highly evolutionary process. Ontology developers almost certainly will need to explore
various iterations before an ontology can be considered to be complete. A development tool should assist
in ontology evolution, and help the user to prevent or circumnavigate common design mistakes. In the OWL
Plugin, some promising approaches for ontology maintenance, partly comparable to modern tools for
programming languages. With programming tools, developers can get instant feedback using the compile
button. Compiler errors are listed below the source code and enable the programmer to quickly navigate to
the affected area. Another very efficient means of detecting programming errors is using so-called test
cases, which have become popular in conjunction with agile development approaches such as Extreme
Programming [6]. A test case is a small piece of code that simulates a certain scenario and then tests
whether the program behaves as expected. It is a good programming style to maintain a library of test cases
together with the source code, and to execute all test cases from time to time to verify that none of the
recent changes has broken existing functionality. To a certain extent, the idea of test cases is related to the
formal class definitions in description logics such as OWL DL. For example, by formally stating that a Parent
is the intersection of Person and a minimum cardinality restriction on the hasChildren property we ensure
that future statements about Parents don’t contradict the original developer’s intention. This is especially
important in an open-world scenario such as the Semantic Web. Thus, DL reasoners can help build and
maintain sharable ontologies by revealing inconsistencies, hidden dependencies, redundancies, and
misclassifications . In addition to reasoners, the OWL Plugin also adopts the notions of test cases and
compile buttons with an “ontology testing” feature

3.3 Reasoning based on Description Logics

One of the key features of ontologies that are described using OWL-DL is that they can be processed by
a reasoner. One of the main services offered by a reasoner is to test whether or not one class is a subclass
of another class. By performing such tests on the classes in an ontology it is possible for a reasoner to
compute the inferred ontology class hierarchy. Another standard service that is offered by reasoners is
consistency checking. Based on the description (conditions) of a class the reasoner can check whether or
not it is possible for the class to have any instances. A class is deemed to be inconsistent if it cannot possibly
have any instances.

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

137 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

The OWL Plugin provides direct access to DL reasoners such as Racer [7]. The current user interface
supports two types of DL reasoning: Consistency checking and classification (subsumption). Support for
other types of reasoning, such as instance checking, is work in progress.
Consistency checking (i.e., the test whether a class could have instances) can be invoked either for all
classes with a single mouse click, or for selected classes only. Inconsistent classes are marked with a red
bordered icon.
Classification (i.e., inferring a new subsumption tree from the asserted definitions) can be invoked with the
classify button on a one-shot basis. When the classify button is pressed, the system determines the OWL
species, because some reasoners are unable to handle OWL Full ontologies. This is done using the validation
service from the Jena

library. If the ontology is in OWL Full (e.g., because metaclasses are used) the system attempts to convert
the ontology temporarily into OWL DL.

 Figure 3 Racer protégé reasoned

 The OWL Plugin supports editing some features of OWL Full (e.g., assigning ranges to annotation
properties, and creating metaclasses). These are easily detected and can be removed before the data are
sent to the classifier. Once the ontology has been converted into OWL DL, a full consistency check is
performed, because inconsistent classes cannot be classified correctly. Finally, the classification results are
stored until the next invocation of the classifier, and can be browsed separately. Classification can be
invoked either for the whole ontology, or for selected subtrees only. In the latter case, the transitive closure
of all accessible classes is sent to the classifier. This may return an incomplete classification because it does
not take incoming edges into account, but in many cases it provides a reasonable approximation without
having to process the whole ontology. OWL files store only the subsumptions that have been asserted by
the user. However, experience has shown that, in order to edit and correct their ontologies, users need to
distinguish between what they have asserted and what the classifier has inferred. Many users may find it
more natural to navigate the inferred hierarchy, because it displays the semantically correct position of all
the classes

The OWL Plugin addresses this need by displaying both hierarchies and making available extensive
information on the inferences made during classification. As illustrated in Figure 3, after classification the
OWL Plugin displays an inferred classification hierarchy beside the original asserted hierarchy. The classes
that have changed their superclasses are highlighted in blue, and moving the mouse over them explains the
changes. Furthermore, a complete list of all changes suggested by the classifier is shown in the upper right
area, similar to a list of compiler messages. A click on an entry navigates to the affected class. Also, the
conditions widget can be switched between asserted and inferred conditions. All this allows the users to
analyze the changes quickly

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

138 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

4 Ontology visualization methods in protégé :

4.1 The Indented list method

The indented list methods represent the taxonomy of the ontology following the file system explorer-tree
view. These methods are intuitive and simple to implement, representing is-a inheritance relationships
through the indented list paradigm, with subclasses appearing below their super classes and indented to
the right. Users may navigate within the class hierarchy and expand or retract branches; when a class (or
multiple classes) is (are) selected in the hierarchy pane as also confirmed by the results of a user evaluation
[8]. The following figure 1 is example of the indented list method

Figure 4 Protégé explorer-tree view

4.2 Protégé Class browser

It is a tool developed by protégé using indented list method. The protégé class browser consists in its
simplicity of representation, and also familiarity to the user. Secondly it offers a clear view of all the class
names and their hierarchy. Thirdly, its retraction and expand of nodes in useful features specific for focusing
on specific parts of the hierarchy, especially for large hierarchies.
Also the open source software is readily available of this. Figure 4 sums up its main characteristics.
However, the protégé class browser has certain limitations. Its technique is that it can represent a tree and
not a graph. Consequently it can display inheritance (is-a) relations, and not role relations. This does not
support visual representation of the role relations. It cannot expand all and, not retract all buttons in
protégé class browser. Above all, there will be zoomable view and no overview window display.

4.3 OntoSphere

The Protégé OntoSphere is another tool using the node-link and tree method with 3D view. The Protégé
OntoSphere has one important merit. It makes three different views available for the user viz. Root focus
scene, tree focus scene and concept focus scene. However there are three limitations. Overview taxonomy
structure cannot be viewed. Properties cannot be visualized and also there is no overview window display.
The figure 5 represents the OntoSphere visualization tab.

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

139 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

Figure 5 : The Protégé OntoSphere

4.4 Ontograph

OntoGraf gives support for interactively navigating the relationships of the OWL ontologies. Various layouts
are supported for automatically organizing the structure of the ontology. Different relationships are
supported: subclass, individual, domain/range object properties, and equivalence. Relationships and node
types can be filtered to help you create the view you desire.

Figure 6 Protégé OntoGra

5 Discussion

While real Semantic Web applications are still in their infancy, there is a clear demand for tools that assist in
application development. The intention of the Protege OWL Plugin is to make Semantic Web technology
available to a broad group of developers and users, and to promote best practices and design patterns. One
of the major benefits of using Protege is its open architecture. The system provides various mechanisms to
hook custom-tailored extensions into it, so that external components like reasoners and Web services can
be integrated easily. Since the source code is open and freely available as well, existing base components
can be used as templates for customized solutions. Projects don’t need to spend time developing their own
base infrastructure with standard features such as loading and managing OWL ontologies. Instead, they can

http://www.ijesm.co.in/

 ISSN: 2320-0294 Impact Factor: 6.765

140 International Journal of Engineering, Science and Mathematics

http://www.ijesm.co.in, Email: ijesmj@gmail.com

start with the OWL Plugin as it comes out-of-the-box and then gradually adapt or remove the features that
don’t completely match their requirements. One of the major benefits of OWL is that it is an official
standard, it would be counterproductive to the Semantic Web if tools are “forced” into defining proprietary
extensions.

6 Conclusion

The visualization of ontologies using protégé tool is a particular sub problem of this area with many
implications due to the various features that an ontology visualization should present. The current work is
an attempt to summarize the research that has been done so far in this area, providing an overview of the
protégé tools and their main advantages and limitations. There is no one specific method that seems to be
the most appropriate for all applications and, consequently, a viable solution is providing the user with
several visualizations, so as to be able to choose the one that is the most appropriate for one’s current
needs.
Semantic web research has, however, already had a major impact on the development and deployment of
ontology languages and tools now often called semantic web technologies. These technologies have rapidly
become a de facto standard for ontology development, and are seeing increasing use not only in research
labs but in large scale IT projects, particularly those where the schema plays an important role, where
information has high value and where information may be incomplete

References

[1]Guarino, N., Giaretta, P., (1995). Ontologies and Knowledge bases: towards a terminological clarification.
Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing,
IOS, 25-32

[2]Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., & Musen, M.A., (2001). Creating Semantic
Web Contents with Protege-2000.IEEE Intelligent Systems, 16, 60--71.

[3]Noy, N. F., McGuiness D. L., (2001). Ontology Development 101: A Guide to Creating Your First Ontology,
Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880

*4+ C.W. Holsapple and K.D. Joshi, “A collaborative approach to ontology design”. Commun. ACM 45 (2002)
pp 42–47

[5] http://protege.stanford.edu

[6] . K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999

[7]V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic Web. In 2nd International
Workshop on Evaluation of Ontology-based Tools (EON-2003), Sanibel Island, FL, 2003

[8] A. Katifori, E. Torou, C. Halatsis, G. Lepouras, C. Vassilakis, (2006). A Comparative Study of Four Ontology
Visualization Techniques in Protégé: Experiment Setup and Preliminary Results,

http://www.ijesm.co.in/
http://protege.stanford.edu/

